

UNITED KINGDOM · CHINA · MALAYSIA

The University of

Nottingham

Switching Behaviour of GaN-based Power Converter subject to **Current-Collapse Effect in Double-Pulse Test**

Arnaud Videt¹, Ke Li², Loris Pace¹, Nadir Idir¹, Paul Evans², Mark Johnson²

¹Laboratory of Electrical Engineering and Power Electronics, University of Lille, France

²Power Electronics, Machines and Control group, University of Nottingham, UK

Pioneering research and skills

How does current collapse influence switching behaviour? \Rightarrow Theoretical analysis on switching waveforms and circuit stability – Experimental evaluation on modified DPT bench

Influence on Switching Waveforms

Influence on Circuit Stability

hiased

Conclusion

- trapping effect **influences turn-on switching** waveforms
- possible impact on **EMC and switching losses**
- similar turn-off waveforms but current collapse impacts immunity to gate instability
- conventional DPT can be misleading for losses estimation, reliability assessment, or comparison with simulations due to pre-bias trapping that might not reflect actual use
- modified DPT allows experimental evaluation of current-collapse influence

Acknowledgement

This work was co-funded by EPSRC centre for power electronics (researcher exchange scheme and research grant *EP/K035304/1 & EP/R004390/1) and University of Lille* through State-Region Planning Contract (CPER-CE2I: Intelligent Integrated Energy Converter project)

MANCHESTER

1824

I'he

University

Sheffield.

